Solving Finite Limits: $\lim _{x \rightarrow a} f(x)$

1. Plug it in
2. Turn the expression into a single fraction
3. Simplify
4. The limit either does not exist, or goes to $\pm \infty$. Check the limit from either side.

- If you get a number, you're done!
- If you get $\infty-\infty$, go to Step 2
- If you get $\frac{0}{0}$, go to Step 3
- If you get $\frac{\text { nonzero }}{0}$, go to Step 4
- If the expression is the sum or difference of two fractions, find a common denominator
- Go to Step 3
- Factor numerator and denominator completely.
- Cancel any like terms
- Return to Step 1
- From the left: Evaluate $\lim _{x \rightarrow a^{-}} f(x)$. You will get either $\frac{\text { nonzero }}{0^{-}}$or $\frac{\text { nonzero }}{0^{+}}$
- From the right: Evaluate $\lim _{x \rightarrow a^{+}} f(x)$. You will get either $\frac{\text { nonzero }}{0^{-}}$or $\frac{\text { nonzero }}{0^{+}}$
- If the limits from either side are the same, that is the limit:

1. $\frac{ \pm}{+}=\infty$
2. $\overline{=}=\infty$
3. $\pm=-\infty$
4. $\bar{\mp}=-\infty$

- If the limits are different from either side, the limit Does Not Exist

