Solving Infinite Limits: $\lim _{x \rightarrow \pm \infty} f(x)$

1. Plug it in
2. Turn the expression into a single fraction
3. Divide by the dominant term
4. Evaluate as $x \rightarrow \infty$

- Be careful evaluating infinite values
- If the expression is the sum or difference of two fractions, find a common denominator
- If you have an expression without fractions that contains a square root, multiply by the conjugate
(e.g. $\left.\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+3 x}-x\right)\right)$
- Identify the dominant term (x^{k}, where k is the highest power)
- You may choose the dominant term overall, or the dominant term of the denominator. I recommend choosing from the denominator
- Divide each term by x^{k}. Remember that if we are dividing by x^{k}, then anything under a square root is divided by $x^{2 k}$.
- Most terms should approach 0
- Whatever you are left with should be your answer

