

Things to Know About Work

W = Fd	W: Work
F = ma	F: Force
$m = \delta V$	m: mass
	a: acceleration (gravity) δ : density
$\Rightarrow W = \delta Vad$	V: volume

- When units are in m and kg, $a = 9.8 \text{ m/s}^2$
- When units are in ft and lb, δa is a single quantity known as "weight-density", and can be calculated based on the information in the problem. The weight density of water is 62.5 lb/ft³, and the mass of water is 1000 kg/m³
- Force is measured in lbs or Newtons

Solving Spring Problems

=

The *force* required to hold a spring x distance beyond its natural length is given by

$$F = kx$$

The work required to move a spring from a to b beyond its natural length is given by

$$W = \int_{a}^{b} kx \, dx$$

- 1. Convert all numbers to the proper units
 - Units should be meters and Newtons, or pounds and feet

2. Using the given information, find the spring constant k

3. Plug this into the equation for the desired quantity

Remember!

a and b are measure in distance beyond the natural length!

Solving Lifting Problems

Assuming that what you are lifting has uniform density, and you are lifting at a constant rate:

- 1. Determine what x will represent (the length you have pulled up, the length *not* yet pulled up, etc.)
 - You can choose anything you want for x, but remember to **be consistent** after you'd made your choice.
- 2. Determine two known points on your force function
 - Usually you know the starting and ending forces
- 3. Find the F(x), the function that gives the force being applied given any x. This function will be linear, given the conditions of uniform density and constant lifting rate.
- 4. Determine the bounds, a and b, on the integral. These are the values of x for which you are actually applying a force.

5. Integrate $\int_{a}^{b} F(x) dx$

Solving Pumping Problems

- 1. Set up a coordinate axis system on the tank. Be sure to place it so that the variable edges appear on the xy-plane
- 2. Draw a horizontal slice of fluid.
- 3. Determine the bounds the values of y at which we have fluid that we need to move
- 4. Determine δa
 - Assuming the fluid being moved is water, if units are in feet/pounds: $\delta a = 62.5$
 - If units are in meters/kg: $\delta a = 9800$
- 5. Identify the vertical level that the fluid is being pumped to, $y = \ell$
- 6. The distance traveled for each slice is ℓy
- 7. Find the volume V of the slice, determined by the geometric shape of the tank. This includes a dy

8. Integrate $\int_{a}^{b} \delta V a(\ell - y)$