The Definition of a Limit
We say $\lim _{x \rightarrow a} f(x)=L$ if for every $\epsilon>0$, there exists a $\delta>0$ such that

$$
0<|x-a|<\delta \Longrightarrow|f(x)-L|<\epsilon
$$

## How to Solve $\epsilon-\delta$ Problems

Given $\epsilon>0$, do the following:

1. Set $f(x)=L+\epsilon$ and $f(x)=L-\epsilon$
2. Solve for $x$
3. Compute $|x-a|$ for each $x$
4. The smallest result is $\delta$

This method will work for any function, but Step 2 may require a calculator.
If not given $\epsilon$, do the following

1. Set up $|f(x)-L|<\epsilon$
2. Use algebra to get $|x-a|$ on the left
3. The quantity on the right (a function of $\epsilon$ ) is $\delta$

Generally, this method will only be useful for linear functions. When $f(x)$ is linear, you can use this even when you know $\epsilon$.

