

Types of Discontinuities

Infinite Discontinuity

We say that f(x) has an infinite discontinuity at x = a if

$$-\lim_{x \to a^+} f(x) = \pm \infty$$

or
$$-\lim_{x \to a^-} f(x) = \pm \infty$$

Jump Discontinuity

We say that f(x) has a jump discontinuity at x = a if

$$-\lim_{x \to a^{-}} f(x) \neq \lim_{x \to a^{+}} f(x)$$
and

– Both limits are finite

Removable Discontinuity

We say that f(x) has a removable discontinuity at x = a if

$$-\lim_{x \to a} f(x) \text{ exists}$$
and
$$-\lim_{x \to a} f(x) \neq f(a)$$

Checking for Discontinuity	
Evaluate the one-sided limits: $\lim_{x \to a^{-}} f(x) \text{ and } \lim_{x \to a^{+}} f(x)$	 Are they both finite? No: there is an infinite discontinuity at x = a Yes: go to the next step
Compare the one-sided limits	 Are the one-sided limits equal? No: there is a jump discontinuity at x = a Yes: go to the next step
Evaluate $f(a)$	 Does lim f(x) = f(a)? No: there is a removable discontinuity at x = a. Yes: f is continuous at a