Suggested Homework for Lecture 6

Math 116

(1) For each of the following functions, determine the interval(s) on which $f(x)$ is increasing or decreasing.
(1a) $f(x)=x^{3}-12 x$
(1b) $f(x)=x^{4}-4 x$
(1c) $f(x)=x^{3}-6 x+1$
(1d) $f(x)=-x^{2}+x+13$
(2) For each of the following functions, find the critical points and identify each as a local maximum, minimum, or neither.
(2a) $f(x)=x^{3}+1$
(2b) $f(x)=x^{2}+2 x+3$
(2c) $f(x)=x^{3}-3 x+2$
(2d) $f(x)=x^{4}-2 x^{2}$
(3) In the following problems, the graph of $f^{\prime}(x)$ is shown (next page). For each graph, determine where $f(x)$ is increasing and decreasing; identify the critical points of $f(x)$ and classify each as a local maximum, local minimum, or neither.
(3a) Figure 1
(3b) Figure 2
(3c) Figure 3
(4) In the following problems, find the absolute minimum and maximum values of the given function $f(x)$ on the indicated interval.
(4a) $f(x)=x^{2}+6 x+7,[-4,0]$
(4b) $f(x)=x^{3}+x,[-1,1]$
(4c) $f(x)=3 x^{4}-4 x^{3}+12,[-1,2]$
(4d) $f(x)=2 x^{3}-3 x^{2}-36 x+5,[0,5]$

Figure 1:

Figure 2:

Figure 3:

Answers to Suggested Homework for Lecture 6

Math 116

(1a) Increasing on $(-\infty,-2)$ and $(2, \infty)$; decreasing on $(-2,2)$
(1b) Increasing on $(1, \infty)$; decreasing on $(-\infty, 1)$
(1c) Increasing on $(-\infty,-\sqrt{2})$ and $(\sqrt{2}, \infty)$; decreasing on $(-\sqrt{2}, \sqrt{2})$
(1d) Increasing on $\left(-\infty, \frac{1}{2}\right)$; decreasing on $\left(\frac{1}{2}, \infty\right)$
(2a) $x=0$, neither
(2b) $x=-1$, local minimum
(2c) $x=-1$, local maximum, $x=1$, local minimum
(2d) $x=-1$, local minimum, $x=0$, local maximum, $x=1$, local minimum
(3a) Increasing on (a, c) and (e, ∞), decreasing on $(-\infty, a)$ and (c, e). The critical points are $x=a, c$, and e, where $x=a$ and $x=e$ are local minima, $x=c$ is a local maximum.
(3b) Increasing on $(-\infty, a),(c, e)$ and (e, ∞). Decreasing on (a, c). Critical points are $x=a, x=c$, and $x=e$, with $x=a$ a local maximum, $x=c$ a local minimum, and $x=e$ neither.
(3c) Increasing on $(-\infty, a),(a, c)$, and (c, ∞). Decreasing nowhere. Critical points are $x=a$ and $x=c$, and both are neither a local max nor a local min.
(4a) Absolute maximum 7 at $x=0$, absolute minimum -2 at $x=-3$.
(4b) Absolute maximum 2 at $x=1$, absolute minimum -2 at $x=-1$.
(4c) Absolute maximum 28 at $x=2$, absolute minimum 11 at $x=1$.
(4d) Absolute maximum 5 at $x=0$, absolute minimum -76 at $x=3$.

