Suggested Homework for Lecture 6

Math 116

(1) For each of the following functions, determine the interval(s) on which f(x) is increasing or decreasing.

(1a) $f(x) = x^3 - 12x$ (1b) $f(x) = x^4 - 4x$ (1c) $f(x) = x^3 - 6x + 1$ (1d) $f(x) = -x^2 + x + 13$

(2) For each of the following functions, find the critical points and identify each as a local maximum, minimum, or neither.

(2a)
$$f(x) = x^3 + 1$$

(2b) $f(x) = x^2 + 2x + 3$
(2c) $f(x) = x^3 - 3x + 2$
(2d) $f(x) = x^4 - 2x^2$

(3) In the following problems, the graph of f'(x) is shown (next page). For each graph, determine where f(x) is increasing and decreasing; identify the critical points of f(x) and classify each as a local maximum, local minimum, or neither.

(3a) Figure 1(3b) Figure 2(3c) Figure 3

(4) In the following problems, find the absolute minimum and maximum values of the given function f(x) on the indicated interval.

(4a) $f(x) = x^2 + 6x + 7$, [-4,0] (4b) $f(x) = x^3 + x$, [-1,1] (4c) $f(x) = 3x^4 - 4x^3 + 12$, [-1,2] (4d) $f(x) = 2x^3 - 3x^2 - 36x + 5$, [0,5]

Figure 1:

Figure 2:

Figure 3:

Answers to Suggested Homework for Lecture 6

Math 116

(1a) Increasing on $(-\infty, -2)$ and $(2, \infty)$; decreasing on (-2, 2)

(1b) Increasing on $(1,\infty)$; decreasing on $(-\infty,1)$

(1c) Increasing on $(-\infty, -\sqrt{2})$ and $(\sqrt{2}, \infty)$; decreasing on $(-\sqrt{2}, \sqrt{2})$

(1d) Increasing on $(-\infty, \frac{1}{2})$; decreasing on $(\frac{1}{2}, \infty)$

(2a) x = 0, neither

(2b) x = -1, local minimum

(2c) x = -1, local maximum, x = 1, local minimum

(2d) x = -1, local minimum, x = 0, local maximum, x = 1, local minimum

(3a) Increasing on (a, c) and (e, ∞) , decreasing on $(-\infty, a)$ and (c, e). The critical points are x = a, c, and e, where x = a and x = e are local minima, x = c is a local maximum.

(3b) Increasing on $(-\infty, a)$, (c, e) and (e, ∞) . Decreasing on (a, c). Critical points are x = a, x = c, and x = e, with x = a a local maximum, x = c a local minimum, and x = e neither.

(3c) Increasing on $(-\infty, a)$, (a, c), and (c, ∞) . Decreasing nowhere. Critical points are x = a and x = c, and both are neither a local max nor a local min.

(4a) Absolute maximum 7 at x = 0, absolute minimum -2 at x = -3.

(4b) Absolute maximum 2 at x = 1, absolute minimum -2 at x = -1.

(4c) Absolute maximum 28 at x = 2, absolute minimum 11 at x = 1.

(4d) Absolute maximum 5 at x = 0, absolute minimum -76 at x = 3.