

1. Use the given graph of $f(x) = \sqrt{x}$ to find a number δ such that if $|x - 1| < \delta$ then |f(x) - 1| < .1

2. Use the given graph of f to find a number δ such that if $|x - .4| < \delta$ then |f(x) - .5| < .2

3. Let f(x) = 2x + 3. It is true that $\lim_{x \to 3} f(x) = 9$.

Find the largest value of δ such that if $|x - 3| < \delta$, then |f(x) - 9| < 1.

4. Let $f(x) = x^2 + 1$. It is true that $\lim_{x \to -1} f(x) = 2$.

Find the largest value of δ such that if $|x+1| < \delta$, then |f(x) - 2| < .5.

- 5. Given that $\lim_{x \to -3} (2x + 4) = -2$, find the largest δ corresponding to $\epsilon = \frac{1}{2}$
- 6. Given that $\lim_{x\to 2} (3x-1) = 5$, find the largest δ corresponding to $\epsilon = 1/5$.

- 7. Given $\lim_{x \to 4} (3x 2) = 10$, find the largest δ for any given ϵ
- 8. Given $\lim_{x \to 4} (-3x + 5) = -7$, find the largest δ for any given ϵ
- 9. Using the ϵ , δ definition of a limit, prove that $\lim_{x \to -1} (3x + 4) = 1$.

10. Using the ϵ , δ definition of a limit, prove that $\lim_{x \to 4} \left(\frac{1}{4}x - 3\right) = -2$.