1. Use the given graph of $f(x)=\sqrt{x}$ to find a number $\delta$ such that if $|x-1|<\delta$ then $|f(x)-1|<.1$

2. Use the given graph of $f$ to find a number $\delta$ such that if $|x-.4|<\delta$ then $|f(x)-.5|<.2$

3. Let $f(x)=2 x+3$. It is true that $\lim _{x \rightarrow 3} f(x)=9$.

Find the largest value of $\delta$ such that if $|x-3|<\delta$, then $|f(x)-9|<1$.
4. Let $f(x)=x^{2}+1$. It is true that $\lim _{x \rightarrow-1} f(x)=2$.

Find the largest value of $\delta$ such that if $|x+1|<\delta$, then $|f(x)-2|<.5$.
5. Given that $\lim _{x \rightarrow-3}(2 x+4)=-2$, find the largest $\delta$ corresponding to $\epsilon=\frac{1}{2}$
6. Given that $\lim _{x \rightarrow 2}(3 x-1)=5$, find the largest $\delta$ corresponding to $\epsilon=1 / 5$.

## The Definition of a Limit: Examples

7. Given $\lim _{x \rightarrow 4}(3 x-2)=10$, find the largest $\delta$ for any given $\epsilon$
8. Given $\lim _{x \rightarrow 4}(-3 x+5)=-7$, find the largest $\delta$ for any given $\epsilon$
9. Using the $\epsilon, \delta$ definition of a limit, prove that $\lim _{x \rightarrow-1}(3 x+4)=1$.
10. Using the $\epsilon, \delta$ definition of a limit, prove that $\lim _{x \rightarrow 4}\left(\frac{1}{4} x-3\right)=-2$.
