1. When a rock is thrown into the air on the surface of the moon at a velocity of $10 m/s^2$, its height is given by the function $h(t) = 10t - 3.1t^2$ where t is measured in seconds.

SYMPLIT

- (a) Find the average velocity for the time period beginning with t = 1 and lasting
 - i. .4 seconds
 - ii. .1 seconds
 - iii. .04 seconds
 - iv. .01 seconds
- (b) Estimate the instantaneous velocity when t = 1.
- 2. The following table gives the position of a driver

t (seconds)	0	1	2	3	4	5	6
s (feet)	0	4	12	28	64	180	240

(a) Find the average velocity for each time interval:

i. $[1, 4]$	iii. [3,4]	v. $[4, 5]$
ii. $[2, 4]$	iv. [3, 5]	vi. $[4, 6]$

- (b) Graph s as a function of t, and use the graph to estimate the instantaneous velocity when t = 4.
- 3. The displacement of a particle moving along the x-axis is given by the equation

$$s = \sin\left(\frac{\pi t}{2}\right) + 2\cos\left(\frac{\pi t}{2}\right)$$

Find the average velocity for the time interval [0, 2] and the time interval [0, 1].

- 4. Consider the curve $y = x^2$.
 - (a) Find the slope of the secant line connecting the values of x:
 - i. x = -3 and x = -1ii. x = -2 and x = -1iii. x = -1.1 and x = -1

(b) Estimate the slope of the tangent line at x = -1, and use it to find the equation of the tangent line.