1. When a rock is thrown into the air on the surface of the moon at a velocity of $10 \mathrm{~m} / \mathrm{s}^{2}$, its height is given by the function $h(t)=10 t-3.1 t^{2}$ where t is measured in seconds.
(a) Find the average velocity for the time period beginning with $t=1$ and lasting
i. . 4 seconds
ii. . 1 seconds
iii. . 04 seconds
iv. . 01 seconds
(b) Estimate the instantaneous velocity when $t=1$.
2. The following table gives the position of a driver

t (seconds)	0	1	2	3	4	5	6
s (feet)	0	4	12	28	64	180	240

(a) Find the average velocity for each time interval:
i. $[1,4]$
iii. $[3,4]$
v. $[4,5]$
ii. $[2,4]$
iv. $[3,5]$
vi. $[4,6]$
(b) Graph s as a function of t, and use the graph to estimate the instantaneous velocity when $t=4$.
3. The displacement of a particle moving along the x-axis is given by the equation

$$
s=\sin \left(\frac{\pi t}{2}\right)+2 \cos \left(\frac{\pi t}{2}\right)
$$

Find the average velocity for the time interval $[0,2]$ and the time interval $[0,1]$.
4. Consider the curve $y=x^{2}$.
(a) Find the slope of the secant line connecting the values of x :
i. $x=-3$ and $x=-1$
ii. $x=-2$ and $x=-1$
iii. $x=-1.1$ and $x=-1$
(b) Estimate the slope of the tangent line at $x=-1$, and use it to find the equation of the tangent line.

