1. For the following probability density function f given below, find $P\left(\frac{\pi}{3} \leq X \leq \frac{\pi}{2}\right)$

$$
f(x)= \begin{cases}\sin (2 x), & 0 \leq x \leq \frac{\pi}{2} \\ 0, & \text { otherwise }\end{cases}
$$

2. Given the function

$$
f(x)= \begin{cases}k\left(4 x-x^{2}\right) & 0 \leq x \leq 4 \\ 0 & \text { otherwise }\end{cases}
$$

for what value of k is $f(x)$ a probability density function?
3. Find the mean of the following distribution:

$$
f(x)= \begin{cases}\frac{2}{\sqrt{\pi}} e^{-x^{2}} & x \geq 0 \\ 0 & x<0\end{cases}
$$

4. Consider the function whose graph is given below (assume it is zero for $x<0$ and $x>10$).

(a) Explain why this is a probability density function
(b) Evaluate $P(X<4)$
(c) Evaluate $P(4<X<9)$
(d) Find the mean
(e) Find the median
5. The function $f(x)=x e^{-x}$ for $x \geq 0$ and $f(x)=0$ for $x<0$ is a probability density function. Find $P(2 \leq X \leq 3)$
6. For the function

$$
f(t)= \begin{cases}0 & t<0 \\ c e^{-c t} & t \geq 0\end{cases}
$$

(a) Show that $f(t)$ is a probability density function
(b) Find the mean μ in terms of c
(c) Find the median M in terms of c

