1. Find the area of the surface of revolution obtained by rotating the curve $y=\frac{x^{3}}{3}$ about the x-axis for $0 \leq x \leq 2$.
2. Write an integral that represents the surface area when the curve $y=\tan x, 0 \leq x \leq \pi / 4$ is revolved about the line $y=-2$.
3. Set up and simplify an integral for the area of the surface of revolution obtained by rotating $y=\frac{x^{4}}{16}+\frac{1}{2 x^{2}}$, $1 \leq x \leq 2$ about the y-axis.
4. The curve $y=\sqrt{a^{2}-x^{2}}, \frac{-3 a}{4} \leq x \leq \frac{3 a}{4}$ is rotated about the x-axis. Find the area of the resulting surface.
5. Find the surface area if the curve $y=\sqrt{9-x^{2}}, 1 \leq x \leq 2$ is rotated about the x-axis.
6. Find the area of the surface obtained by rotating $y=\sqrt{1+4 x}$ about the x-axis for $1 \leq x \leq 5$
7. Set up, but do not evaluate, an integral for the area of the surface of revolution obtained by rotating the curve $y=1+2 x^{2}, 1 \leq x \leq 4$ about the x-axis.
8. Set up, but do not evaluate, an integral to find the area of the surface of revolution obtained by rotating $y=\frac{1}{x}$ for $1 \leq x \leq 5$ about the line $y=2$.
9. Set up, but do not evaluate, an integral to find the area of the surface of revolution obtained by rotating $y=\frac{1}{x}$ for $1 \leq x<\infty$ about the x-axis (this surface is called Gabriel's horn). Show that this integral is divergent.
10. Show that the surface area of a sphere is given by $S=4 \pi r^{2}$
11. Find the surface area if the line segment from $(3,3)$ to $(7,0)$ in the $x y$-plane is rotated about the y-axis.
12. Set up an integral that represents the area of the surface of revolution generated by rotating the curve $y=\tan x, 0 \leq x \leq \pi / 4$ about the line $x=-2$.
