1. If f'(x) < 0 and f''(x) > 0 for $a \le x \le b$, order L_n , R_n , M_n and T_n where L_n is the left endpoint approximation, R_n is the right endpoint approximation, M_n is the midpoint rule, and T_n is the trapezoidal rule each using n subdivisions.

SYMPLIT 🕉

2. If f'(x) > 0 and f''(x) < 0 for $a \le x \le b$, place the following in increasing order: L_n , R_n , M_n and T_n , where L_n is the approximation of the integral using n subdivisions and the left end point, R_n uses the right end point, M_n uses the Midpoint Rule, T_n uses the Trapezoidal Rule.

3. For
$$\int_0^8 \sin(x^2) dx$$
, find R_4 , L_4 , M_4 , T_4 and S_4 .

- 4. If f(x) is a continuous function on the interval $0 \le x \le 2$ and f(0) = 1.5, f(0.5) = 1.75, f(1) = 1.5, f(1.5) = 1.25, f(2) = 2.5, estimate $\int_0^2 f(x) dx$ by finding L_4 , R_4 , T_4 , M_2 , and S_4 .
- 5. Use the integral definition of $\ln 2$ and the midpoint rule with n = 2 to approximate $\ln 2$.
- 6. For $\int_0^{3\pi} \sin(x) dx$, which of the following would give the most accurate approximation: T_3, M_3, R_3, L_3 ?
- 7. Use the trapezoidal rule with n = 2 to approximate $\int_{-1}^{3} x^4 dx$
- 8. The graph for f''(x) is given below for $0 \le x \le 2\pi$. Is the error for the approximation M_{100} of $\int_0^{2\pi} f(x) dx$ less than 0.005? Justify your conclusion.

9. Use the following table of values and Simpson's Rule with n = 4 to estimate $\int_0^2 f(x) dx$

x	0.0	0.5	1.0	1.5	2.0
f(x)	2.5	2.8	3.0	3.2	3.5

10. Simpson's rule with *n* subdivisions, where *n* is even, is used to approximate the integral $\int_0^{\pi/2} \sin(2x) dx$. If E_S is the error in using Simpson's Rule, what is the correct upper bound for $|E_S|$?

O2017 Symplit, LLC