1. If $f^{\prime}(x)<0$ and $f^{\prime \prime}(x)>0$ for $a \leq x \leq b$, order L_{n}, R_{n}, M_{n} and T_{n} where L_{n} is the left endpoint approximation, R_{n} is the right endpoint approximation, M_{n} is the midpoint rule, and T_{n} is the trapezoidal rule each using n subdivisions.
2. If $f^{\prime}(x)>0$ and $f^{\prime \prime}(x)<0$ for $a \leq x \leq b$, place the following in increasing order: L_{n}, R_{n}, M_{n} and T_{n}, where L_{n} is the approximation of the integral using n subdivisions and the left end point, R_{n} uses the right end point, M_{n} uses the Midpoint Rule, T_{n} uses the Trapezoidal Rule.
3. For $\int_{0}^{8} \sin \left(x^{2}\right) d x$, find $R_{4}, L_{4}, M_{4}, T_{4}$ and S_{4}.
4. If $f(x)$ is a continuous function on the interval $0 \leq x \leq 2$ and $f(0)=1.5, f(0.5)=1.75, f(1)=1.5$, $f(1.5)=1.25, f(2)=2.5$, estimate $\int_{0}^{2} f(x) d x$ by finding $L_{4}, R_{4}, T_{4}, M_{2}$, and S_{4}.
5. Use the integral definition of $\ln 2$ and the midpoint rule with $n=2$ to approximate $\ln 2$.
6. For $\int_{0}^{3 \pi} \sin (x) d x$, which of the following would give the most accurate approximation: $T_{3}, M_{3}, R_{3}, L_{3}$?
7. Use the trapezoidal rule with $n=2$ to approximate $\int_{-1}^{3} x^{4} d x$
8. The graph for $f^{\prime \prime}(x)$ is given below for $0 \leq x \leq 2 \pi$. Is the error for the approximation M_{100} of $\int_{0}^{2 \pi} f(x) d x$ less than 0.005 ? Justify your conclusion.

9. Use the following table of values and Simpson's Rule with $n=4$ to estimate $\int_{0}^{2} f(x) d x$

x	0.0	0.5	1.0	1.5	2.0
$f(x)$	2.5	2.8	3.0	3.2	3.5

10. Simpson's rule with n subdivisions, where n is even, is used to approximate the integral $\int_{0}^{\pi / 2} \sin (2 x) d x$. If E_{S} is the error in using Simpson's Rule, what is the correct upper bound for $\left|E_{S}\right|$?
