1. Using the method of cylindrical shells, find the volume of the solid obtained by rotating the region bounded by the given curves about the specified line: $x^{2} y=4, y=0, x=1, x=4$; about $x=-3$
2. Let R be the region bounded by $y=\sin x$ and the x-axis for $0 \leq x \leq \pi$. Set up an integral that represents the volume of the solid generated by rotating R about the line $x=4$.
3. Using the method of cylindrical shells, find the volume generated by rotating the given region about the specified line:

(a) A about $x=1$
(b) B about $y=1$
(c) C about $x=0$
4. Using the method of cylindrical shells, find the volume generated by rotating the region bounded by $y=x^{2}-3 x$ and $y=4$ about the line $x=5$.
5. Use the method of cylindrical shells to find the volume generated by rotating the region bounded by $x=1-y^{2}, y \leq 0$, and $x=-3$ about the line $y=-3$.
6. Set up an integral for the volume of the solid obtained by rotating the region bounded by $x=e^{\sin y}$, $0 \leq y \leq \pi$, and $x=0$ about the line $y=-1$.
7. Show (using shells) that the volume of a sphere is given by $V=\frac{4}{3} \pi r^{3}$.
8. Using shells, find the volume of the solid resulting from rotating the region bounded by $x=0, y=x^{1 / 3}$ and $y=1$ about the line $y=-1$.
9. Rotate the region in the first quadrant bounded by $y=\cos \left(x^{2}\right), y=0$ and $x=0$ about the y-axis and calculate the volume.
