1. Let $g(x)=\int_{0}^{x} f(t) d t$ where there graph of f is shown.

(a) Evaluate $g(0), g(1), g(3), g(5)$, and $g(7)$
(b) On what interval(s) is g increasing and decreasing?
(c) Where does g have extrema?
(d) Sketch the graph of g.
2. Differentiate the function: $g(r)=\int_{3}^{r}\left(t^{2}+\sin t\right)^{5} d t$
3. Differentiate the function: $P(t)=\int_{t}^{5} \sqrt{u \ln u} d u$
4. Differentiate the function: $y=\int_{4}^{\sin x}\left(1-t^{2}\right)^{3} d t$
5. Evaluate the integral: $\int_{1}^{2}\left(3-x+4 x^{3}\right) d x$
6. Evaluate the integral: $\int_{1}^{3} \frac{2-x^{2}}{x^{3}} d x$
7. Evaluate the integral: $\int_{\pi / 3}^{2 \pi / 3} \csc ^{2} x d x$
8. Evaluate the integral: $\int_{0}^{2} f(x) d x$ where $f(x)= \begin{cases}1-x^{2} & \text { if } 0 \leq x<1 \\ x^{2}-2 x & \text { if } x \geq 1\end{cases}$
9. What's wrong with this equation? $\int_{\pi / 4}^{3 \pi / 4} \sec ^{2} x d x=\left.\tan x\right|_{\pi / 4} ^{3 \pi / 4}=-2$
10. Differentiate the function: $h(x)=\int_{\sqrt{x}}^{4 x+1}\left(\frac{u}{u^{2}-1}\right) d u$
11. Differentiate the function: $g(x)=\int_{x}^{\sqrt[3]{x}} \sin \left(t^{3}\right) d t$
12. If $f(x)=\int_{0}^{\ln x} \sqrt{t} d t$ and $g(y)=\int_{4}^{y} f(x) d x$, find $g^{\prime \prime}(e)$.
13. If $g(2)=13, g^{\prime}$ is continuous, and $\int_{-3}^{2} g^{\prime}(x) d x=5$, find $g(-3)$.
14. Let $g(x)=\int_{0}^{x} f(t) d t$, with the graph of f shown below

(a) Where does g attain its local maximum and minimum values?
(b) On $[0,7]$, where does g attain its absolute maximum value?
(c) On what intervals is g concave up and concave down?
(d) Sketch the graph of g
15. Evaluate the limit by recognizing it as a Riemann sum: $\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\frac{4 i^{3}}{n^{4}}-\frac{2}{3 n} \sqrt{\frac{i}{n}}\right)$
16. Evaluate the limit by recognizing it as a Riemann sum: $\lim _{n \rightarrow \infty} \frac{2}{n}\left(\left(\frac{2}{n}\right)^{2}+\left(\frac{4}{n}\right)^{2}+\cdots\left(\frac{2 n}{n}\right)^{2}\right)$

Fundamental Theorem of Calculus: Examples

17. Below is the graph of $y=x^{2}$. If the area of region B is 4 times the area of region A , express b in terms $\underbrace{\text { of } \mathrm{C}}_{a}$
