1. Approximate to four decimal places the root of the equation $x^{4}+2 x^{3}-5 x^{2}+1$ using $x_{1}=1$.
2. Using Newton's method, approximate to 2 decimal places $\sqrt[3]{30}$
3. Approximate to two decimal places the intersection of the graphs of $y=x^{2}$ and $y=\sqrt{x+3}$
4. Using Newton's method, approximate to 2 decimal places $\sqrt{7}$
5. Using Newton's method, approximate the 2 decimal places the root of the equation $x^{3}=x-1$
6. Sketch the graph of a function with $x=1$ as a root, but Newton's method fails with $x_{1}=2$.
7. Sketch the graph of a function where $x_{1}=1$ fails to produce a x_{2} with Newton's method.
8. Sketch the graph of a function where $x_{1}=1$ produces successive approximations which diverge to ∞
9. What happens when each of the x values in the graph are used as initial approximations in Newton's Method? Sketch the result for each.

