1. Find the value c that satisfies the conclusion of the Mean Value Theorem for $f(x)=x^{2}+3 x-1$ on $[0,2]$.
2. Find the value of c that satisfies the conclusion of the Mean Value Theorem for $f(x)=e^{2 x}$ on $[-1,1]$
3. Let $f(x)=\frac{1}{x-1}$. Show that there is no value of c in $(0,2)$ such that $f^{\prime}(c)=\frac{f(2)-f(0)}{2-0}$. Why does this not contradict the Mean Value Theorem?
4. Let $f(x)=3+|x-2|$. Show that there is no value of c in $(0,5)$ such that $f^{\prime}(c)=\frac{f(5)-f(0)}{5-0}$. Why does this not contradict the Mean Value Theorem?
5. Show that the equation $e^{2 x}+3 x=0$ has exactly one real root.
6. Show that the equation $\sin (3 x)-7 x=0$ has exactly one real root.
7. Suppose f is an even function and is differentiable everywhere. Prove that $f^{\prime}(0)=0$.
8. Use the Mean Value Theorem to prove that $|\cos a-\cos b| \leq|a-b|$.
9. Let f be continuous and differentiable everywhere. If $f(2)=5$ and $f^{\prime}(x) \geq-2$, what is the smallest value that $f(10)$ can have?
10. Let f be continuous and differentiable everywhere. If $f(-3)=7$ and $-3 \leq f^{\prime}(x) \leq 4$, find values a and b such that $a \leq f(25) \leq b$.
