## Representations of Functions as Power Series

1. Find a power series representation and determine the interval of convergence for $f(x)=\frac{2 x}{3 x^{3}+1}$
2. Find a power series representation and determine the interval of convergence for $f(x)=\frac{x^{2}}{x^{3}+5}$
3. Find a power series representation and determine the interval of convergence for $f(x)=\frac{x+2}{x+3}$
4. Express the function as the sum of a power series by first using partial fractions. Find the interval of convergence. $f(x)=\frac{6 x+10}{x^{2}+4 x+3}$
5. Find a power series representation and determine the radius of convergence for $f(x)=\left(\frac{x}{x+1}\right)^{2}$
6. Find a power series representation and determine the radius of convergence for $f(x)=\left(\frac{\sqrt{x}}{3-x}\right)^{4}$
7. Find a power series representation and determine the radius of convergence for $f(x)=\tan ^{-1}\left(x^{2}\right)$
8. Evaluate the integral as a power series: $\int \frac{x}{1+x^{6}} d x$
9. Find a power series representation and determine the interval of convergence for $f(x)=x \tan ^{-1} x$
10. Evaluate the sum $2 \cdot 1 x^{2}+3 \cdot 2 x^{3}+4 \cdot 3 x^{4}+\cdot 5 \cdot 4 x^{5}+\cdots=\sum_{n=2}^{\infty} n(n-1) x^{n}$.
