Alternating Series: Examples

1. Test the series for convergence: $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{n^{4}+1}{n^{5}+1}$
2. Test the series for convergence: $\sum_{n=1}^{\infty}(-1)^{n} \csc ^{-1} n$
3. Test the series for convergence: $\sum_{n=1}^{\infty}(-1)^{n-1} \sin \left(\frac{1}{n}\right)$
4. Test the series for convergence: $\sum_{n=1}^{\infty} n\left(\frac{-1}{3}\right)^{n}$
5. Test the series for convergence: $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n!}$
6. Test the series for convergence: $\sum_{n=1}^{\infty}(-1)^{n} \frac{n(n+1)}{n!}$
7. Test the series for convergence: $\sum_{n=1}^{\infty}(-1)^{n} \frac{n^{2}}{n+1}$
8. Test the series for convergence: $\sum_{n=1}^{\infty}(-1)^{n} \frac{e^{n}}{n!}$
9. How many terms of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{5}}$ do we need to add in order to find the sum within .0001 of its actual value?
10. How many terms of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\left(n^{2}\right)^{n}}$ do we need to add in order to find the sum within .0001 of its actual value?
11. Approximate the sum of $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n!}$ correct to 2 decimal places.
