Sequences: Examples

- 1. Find a formula for the general term a_n of the sequence $\left\{\frac{1}{5}, \frac{3}{8}, \frac{5}{11}, \frac{7}{14}, \cdots\right\}$
- 2. Find a formula for the general term a_n of the sequence $\left\{\frac{1}{6}, \frac{1}{18}, \frac{1}{54}, \frac{1}{162}, \cdots\right\}$
- 3. Find a formula for the general term a_n of the sequence $\left\{\frac{3}{2}, -\frac{5}{4}, \frac{7}{8}, -\frac{9}{16}, \frac{11}{32}, \cdots\right\}$
- 4. Evaluate $\lim_{n\to\infty} (-1)^n \cos\left(\frac{1}{n}\right)$
- 5. Evaluate $\lim_{n\to\infty} \frac{\ln n}{n}$
- 6. Evaluate $\lim_{n\to\infty}\cos\left(\frac{\pi}{n}\right)$
- 7. Evaluate $\lim_{n\to\infty} \sqrt{n} \sin \frac{\pi}{\sqrt{n}}$
- 8. Evaluate $\lim_{n\to\infty} \sin \frac{\pi}{\sqrt{n}}$
- 9. Evaluate $\lim_{n\to\infty} \cos n\pi$
- 10. Evaluate $\lim_{n\to\infty} \frac{n!}{2^n}$
- 11. Evaluate $\lim_{n\to\infty} \frac{n^2+2}{n^3}$
- 12. Evaluate $\lim_{n\to\infty} \left(1-\frac{5}{n}\right)^n$
- 13. Evaluate $\lim_{n\to\infty} \frac{\sqrt{n^5 + 2n^3 + 5}}{n^3}$
- 14. Evaluate $\lim_{n\to\infty} \frac{n!}{n^n}$
- 15. Show $\lim_{n \to \infty} r^n = 0$ if 0 < r < 1.
- 16. Show the sequence $\left\{\sqrt{2}, \sqrt{2\sqrt{2}}, \sqrt{2\sqrt{2\sqrt{2}}}, \cdots\right\}$ is bounded and increasing. Find the limit.

Sequences: Examples

- 17. A sequence $\{a_n\}$ is defined by $a_1 = 1$ and $a_{n+1} = 4 \frac{1}{a_n}$. Assuming that the sequence converges, find its limit.
- 18. A sequence $\{a_n\}$ is defined by $a_1 = \sqrt{2}$ and $a_{n+1} = \sqrt{2 + a_n}$ for $n \ge 1$. Assuming that the sequence is convergent, find its limit.