

- 1. Find the area enclosed by $r = 3 + 2\sin\theta$
- 2. Find the area enclosed by the spiral $r = e^{\theta}$, where $\theta \in [0, \pi]$
- 3. Find the area of the inner loop of the curve $r = 1 2\sin\theta$
- 4. Find the area of the region that lies inside the curve $r = 3\cos\theta$ and outside the curve $r = 1 + \cos\theta$.
- 5. Find the slope of the polar curve $r = e^{\theta/2}$ at the point (1,0)
- 6. Find the equation of the tangent line to the curve $r = \sin(2\theta)$ when $\theta = \pi/2$
- 7. Find all points where $r = 3 + \sin \theta$ has a horizontal tangent.
- 8. Find all points where $r = \sin^3 \theta$ has a vertical tangent.
- 9. Set up the integral that gives the length of the curve $r = 3 + \sin \theta$
- 10. Find the length of the curve $r = 2^{\theta}, 0 \le \theta \le \pi/2$