1. A curve is parametrized by the equations $\left\{\begin{array}{l}x=6 \sin t \\ y=t^{2}+t\end{array}\right.$. Find the slope of the line that is tangent to this curve at the point $(0,0)$.
2. Find the equation of the tangent line to the curve $\left\{\begin{array}{l}x(\theta)=\theta-\sin \theta \\ y(\theta)=1-\cos \theta\end{array}\right.$ when $\theta=\pi / 3$
3. Find the equation of the tangent line to the curve $\left\{\begin{array}{l}x=e^{t} \\ y=t^{2}\end{array}\right.$ when $t=0$
4. Find all points (if any) where the curve $\left\{\begin{array}{l}x=6 \sin t \\ y=t^{2}+t\end{array}\right.$ has a horizontal tangent
5. Find all points (if any) where the curve $\left\{\begin{array}{l}x(\theta)=\theta-\sin \theta \\ y(\theta)=1-\cos \theta\end{array}\right.$ has a horizontal tangent
6. Find all points (if any) where the curve $\left\{\begin{array}{l}x=e^{t} \\ y=t^{2}\end{array}\right.$ has a vertical tangent
7. Set up the integral used to find the length of the curve defined by the parametric equations

$$
\begin{aligned}
x & =e^{t}-t \\
y & =4 e^{t / 2} \quad 0 \leq t \leq 1
\end{aligned}
$$

8. The position, in feet, of a slow pitch softball at time t, in seconds, is given by the parametric equations $\left\{\begin{array}{l}x=18 \sqrt{3} t \\ y=-16 t^{2}+18 t+4\end{array}\right.$.
(a) What is the rate of change of the height of the ball with respect to its horizontal position when it crosses the plate at $t=1.2$ seconds?
(b) Set up an integral giving the arc length of the path of the ball for $0 \leq t \leq 1.2$
9. Set up the integral used to find the length of the curve defined by the parametric equations

$$
\left\{\begin{array}{l}
x(\theta)=\theta-\sin \theta \\
y(\theta)=1-\cos \theta
\end{array} \quad, \quad 0 \leq \theta \leq 2 \pi\right.
$$

10. Find the area above the x-axis and under the curve $\left\{\begin{array}{l}x(\theta)=\theta-\sin \theta \\ y(\theta)=1-\cos \theta\end{array} \quad, \quad 0 \leq \theta \leq 2 \pi\right.$
