Parametric Equations: Examples

1. A parametric curve is given by $x=3 \sin t, y=2 \cos t$, where $-\pi \leq t \leq \pi$. Sketch the curve by using the parametric equations to plot points. Indicate with an arrow the direction in which the curve is traced as t increases.
2. Sketch the curve given by

$$
\begin{aligned}
& x=t+1 \\
& y=t^{2}, \quad-2 \leq t \leq 1
\end{aligned}
$$

3. Consider the parametric curve given by $x=e^{t}+1, y=e^{2 t}$. Eliminate the parameter to find a Cartesian equation of the curve.
4. Find a Cartesion equation for the curve given by the parametric equations $\left\{\begin{array}{l}x=2 t-1 \\ y=\ln (t)\end{array}\right.$
5. Find a Cartesion equation for the curve given by the parametric equations $\left\{\begin{array}{l}x=\sin t \\ y=\cos ^{2} t\end{array}\right.$
6. Find a Cartesion equation for the curve given by the parametric equations $\left\{\begin{array}{l}x=2 \sec t \\ y=3 \tan t\end{array}\right.$
7. Find a parametrization for the hyperbola $x^{2}-\frac{y^{2}}{4}=1$
8. Find a parametrization for the curve $y^{3}+x^{2}=64$
9. Find 2 parametrizations for the curve $y=x^{2}+4 x+4$
