

- 1. Write an equation for the graph of y = f(x) obtained by the given transformation:
  - (a) Shift 1 upward
  - (b) Shift 2 downward
  - (c) Shift 3 to the right
  - (d) Shift 4 to the left
  - (e) Reflect about the x-axis
  - (f) Reflect about the y-axis
  - (g) Stretch horizontally by a factor of 5
  - (h) Shrink horizontally by a factor of 6
- 2. Find a function resulting from reflecting  $f(x) = x^2 x$  about the line x = 2.
- 3. Find a function resulting from reflecting  $f(x) = 2^x$  about the line y = 3.
- 4. A portion of the graph of  $y = x \ln x$  is shown



Use transformations to create a function that has the following graph:



- 5. Graph  $y = \sqrt{2-x}$  by hand
- 6. Graph  $y = |x^2 1|$  by hand



- 7. Let  $f(x) = \sqrt{x+2}$  and  $g(x) = \ln(x^2 3)$ . Find and state the domain of:
  - (a) f + g
  - (b) f g
  - (c) fg
  - (d) f/g

8. Let  $f(x) = \sqrt{x+2}$  and  $g(x) = \ln(x^2 - 3)$ . Find and state the domain of:

- (a)  $f \circ g$
- (b)  $g \circ f$
- (c)  $f \circ f$
- (d)  $f \circ g$
- 9. Express the function  $P(x) = \ln(\sqrt{x} + 3)$  in the form  $f \circ g \circ h$
- 10. An airplane is traveling parallel to the ground at a speed of 600 mph. The plane is at an altitude of 6 miles, and flies directly over your head at noon.
  - (a) Let s be the distance between you and the airplane (assume you are standing still), and let d be the distance the airplane has traveled. Find a function f such that s = f(d).
  - (b) Let t be the number of hour elapsed since noon. Find a function g such that d = g(t).
  - (c) Find  $f \circ g$ . What does this function represent?